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TWO-FLUID FLOWS OF A MIXTURE OF A GAS AND SOLID PARTICLES WITH 
"FILMSAND "FILAMENTS" APPEARING IN FLOWS PAST IMPERMEABLE SURFACES* 

A.N. KBAIKO and S.M. SULAIMANOVA 

The two-fluid model with dispersed phase, representing a solid medium with 
zero intrinsic pressure, is used to study the appearance of "films" and 
"filaments" in the flow of a mixture of a gas and solid particles past 
impermeable surfaces. The films, endowed with surface properties (mass, 
etc.) and the filaments with analogous linear properties, first introduced 
in /l/ in the hydrodynamics of media without pressure with prohibited 
overtaking, appear in two-fluid models as a result of the intersection of 
dispersed-phase trajectories caused, for example, by inhomogeneities in 
the initial distributions /2-6/. In /7/ films were used to describe thin 
boundary layers of the solid phase forming at the walls and moving along 
them, and the possibility of the film separating (parting) from the wall 
is noted( The equations and conditions governing the formation, 
motion and separation of the films and filaments from surfaces are derived 
below, and various models of the detachment of films and their subsequent 
evolution are presented. It is shown how a detached (free) film collects 
particles, separating the regions containing a mixture from those Of pure 

gas, and acting as if it were a filter. In the models with absorbent walls, 
where the particles terminate their existence, the same regions are 
separated by the tangential discontinuities of the particulate continuum 
through which pure gas flows. Cases are noted of the flows in nozzles 
where a film, after detaching itself, efther becomes reattached to the 
wall or forms a filament on the axis. It is shows that particles may form 
zones of finite volume in flows past blunt bodies. The possibility of a 
film forming in a rarefaction flow, when a two-phase mixture flows super- 
sonically past a sharp bend, is demonstrated. 

1. In considering two-phase flows.we shall limit ourselves to the two-fluid (two velocity 
and two-temperature) approximation. This means that all dispersed particles have, at every 
point, only one velocity and one temperature. In this approximation the particles, on being 
reflected from a rigid wall, inevitably find themselves within a boundary layer of zero thick- 
ness, and move with it along the surface of the body. This is how a surface film is formed 
with, generally speaking, infinite volume density pa of the particles, and, as a rule, finite 
surface density psn. Here and henceforth the subscript s will indicate the parameters of the 
continuum of the particles (the "second" phase), and u will refer to the film parameters. The 
gas parameters will be denoted by the same symbols without subscripts. 

The appearance of a boundary film suggests, at first glance, that the model is imperfect, 
especially since the change to a three-fluid approximation with two particulate media (incid- 
ent onto and reflected from the wall) yields what seems to be a more complete description 
without introducing the concept of a film. However, it so happens that when we stipulate the 
existence of particulate media moving with respect to each other, their collisions must be 
taken into account. If at the same time the mean free path I of the reflected particles with- 
in the flow of the oncoming particles satisfies the inequality b( L, where L is the character- 
istic dimension of the flow, the replacement of the boundary region near the wall by an in- 
finitely thin film in three-velocity flow, is justified. 

We write the equation describing the motion of the film and the change in the gas para- 
meters on it for the stationary case, neglecting, as in /3,7/, the volume of the particles 
outside the film. Let Fudenote the force acting on unit area of the film from the direction 
of the wall, and Q*the heat flux defined in the same manner. We direct the unit vector n 

*Prikl.Matem.Mekhan.,Vo1.47,No.4,pp.619-63O,lg83 
**I Unfortunately, in the course of a further study of the separation conditions (see /8/ and 
:Gorbachev 1u.E. Boundary conditions in the theory of heterogeneous media. Boundary Layer. 
Leningrad, izd. FTI, 1980, preprint No.6841, the use of an incorrect expression to describe 
the projection of the equation of motion of the film onto the normal to the wall made its 
separationwithin theframework ofthemodelwit5hoTrointrinsicpressureof theparticles impossible. 
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along the inner normal to the body and denote by Fnathe projection of Faon n. putting F,,O = 
-IIF-. Then F,,#>O on the film andtherelation 

F,G=O (1.1) 

holds together with F,~xs Fa + nF,,O = 0 and Q* = 0 on the free film, while on the attached 
film it can hold only in special cases (see below). If (r denotes an arbitrary area of the 
film and y is its contour, then taking into account Fa and Q" in Eqs.(3.3) of /3/ we arrive 
at the laws of conservation which hold on the free film (Fa = 0,Q" = 0) as well as on the 
attached film 

[PV,]-0, [p + PU,'] + p,%~=O, (PV,)_ pJ,1+ PAa=O, (1.2) 

@U,)_[Il + P."(U*"t" + qo)=0 

ss ([p.U&,I- P,=(U,~P + v') - Q?~Q + 

2 p,'V$,E.~ dy- 
V 

O (” 
=e+-gU’, I=E++) 

Here [cpl = ‘p+ - cp_ is the difference in the values of cp on the film; the+and - signs are 
given to quantities with n-+ +0 and n-+-O respectively, nis measured in the direction 
of s, the orientation of the unit vectors n at the points of the attached and free film is 
assumed to agree, p and e denote the pressure and specific (per unit mass) internal energy, 
U, U, = nU and U, = U - nU, denote the velocity vector and its normal and tangential com- 
ponent to o,U,~ar UP, since on the stationary film nU," = 0; u = 1 u 1; u,Na is the ProJection 
of U,c on the normal N to y outward with respect to cr. The vector N as well as Upare tangent 
to the film, f* and @denote the force and heat flux per unit area of the film acting from the 
direction of the gas, and are known functions of the scalar parameters of the film and gas 
(for a free film they act from both sides), and the differences U* -Up. The only component 
of p needed for the closure of (1.2) is the expression for F,'J. The attached film clings to 
the wall, i.e. as we said before, we have 

nU,cr=O (1.3) 

Therefore the projection of the equation of angular momentum of the film (the sixth equation 
of (1.2)) on the normal to itself determines, together with (1.3)) F,,O for as long as F,,@> 0, 

Let us stipulate that lo, its components and q" vanish only when the difference in the 
corresponding velocities, their components and temperatures of the gas (T) and film (TP) all 
vanish. For F,a we may, although not necessarily, adopt the law of "dry" friction according 
to which the force FT* acts against U,‘J and has a numerical value of KF,,‘J with R > 0. 

In writing the equations of the film in the form (1.2) we assumed that the forces and 
heat fluxes acting over y are small, although, in order to be able to consider the film as a 
whole (without appreciable stratification of the velocities and temperatures across its thick- 
ness), the forces acting within the film on any area normal to n and the corresponding heat 
fluxes, must be of the order of F,?Fp and 0". These demands do not contradict each other 
since in the presence of stresses and heat fluxes of the order of Fna, Fza and QOthe possibrl- 
ity of neglecting their contributions to the integrals over y depends on the fact that the 
layer thickness is small. We note that in the stationary flow, Fa, having done no work above 
the film, affects only the redistribution of its kinetic and internal energy. For this reason 
the equation for the total energy of. the film given in (1.2) does not contain F". In /7,8/ 
it is written incorrectly. 

Even if condition (1.1) holds on the line F' of separation between the film and the body, 
FTo and Q" need not vanish on approaching F' from the side of the attached film irrespective 
of the law of friction used. In the case of dry friction F, avanishes on r' togetherwith F,a. 
Equation (1.1) represents the condition of detachment only in the case when r* differs from 

the line of break or discontinuity in the curvatures of the streamlined surface. We shall see 
below that here the film detaches from the body without forming a discontinuity in its curva- 
tures. We shall call such a detachment "smooth". If I? is the line of break or discontinuity 

in the surface curvature, then (1.1) does not, in general, hold when r* is approached from the 

direction of the attached film. The limiting value F,,@> 0, and a break in the curvature of 

the film occurs on I". Moreover, situations are possible in which the film, after parting 

from the body, makes finite angles on Iy with its parts attached to the body. Finally, in- 

stead of the film detaching from the body we can have a filament formed as a result of the 

Intersection of the film tralectories and characterized by the finite linear density of the 



particles p' in the general ca5e of infinite Pa, and even nose so of p.. The filament para- 

metess will be denoted by the superscript 1. 
We will analyze the above possibilities by first deriving frw (1.2) the equations descsi- 

bing the attached film up to its moment of separation. Since by virtue of the condition of 

impermeability we have US+ = O,at the wall, it follows #at the first equation of (1.2) impl- 

res V,=O, i.e. the gas does not diffuse into the film. This, together with (1.31, the re- 
maining equations of (1.2) for the gas and the assumptions made about the character of the 

dependence of fn8* f,O and @ on the parameters of the medium, implies that 

fa-0, pa=0 (L-4) 

and the velocity, as well as the temperatureof the gas "inside" the attached film areidentical 
with U~and T,‘J, and, in general, differ from &and T_. The conclusions reached, which re- 
semble those made reached in /7/ (where for some unknown reason the equality of the specific 
intexnal energies and not the temperaturesisdiscussed), and agree with those reached in /3/ 
fox films moving along the plane of symmetry of the flow are, on one hand, obvious, and on 
the ather hand, largely conditional. Indeed, since we have zexa gas flow through an attached 
film of zero thickness, it follows that the flow cannot act on a film with a finite particle 
flow rate; secondly, in such a situation we can talk uf the properties of the gas in the film 
only by having in mind a transition to a layer of finite. though small, thickness. This 
corresponds completely to the situation existing for filaments /3/ where f' =gl = &and within 

the cluster we have U = U,' and T = T.'. Taking this into account, we shall delete the 
subscript s from parameters having the indices D and 1. 

Taking into account (i.4), we will reduce the remaining equations of (1.21, which, to- 
gether with (1.3) and the expressions for F Pand p, describe the evolution of the attached 
film and define F,,: to the form 

The system contains, in addition to p and Q"r only the parameters of the particles precipi- 
tatinq onto the film (with the minus sign omitted) r and of the film itself. The system can 
also be used for the 
r" representing the 

segments on which the parameters are continuous. and for the filaments 
boundary lines and their discontinuities. The latter, as we said before, 

(1.5) 

arise from the intersections of the film trajectories. 
(1.5) is equivalent to the equations 

At the segments of continuity system 

V,(pOUS)-p,u,= 0 

Qd(pWk*U(t)-pIUmU~k -F,,"=O (km 1,2,3) 

V,(p"EaUQ)-p~U,E,-Q==O 

(1.6) 

were UA" and FkQ are the projection5 of Wv and Fe onto the axes of a fixed, rectilinear xxs5r, 
system of coordinates which can be conveniently attached to the point of the film under con- 
sideration and orientate it so that its unit vectors ijril= s and ia fO= a right-haMe&tDliad 
and iris directed along U@. The change from (l-5) to (1.6) is based on the use of Green's 
formula for smooth surfaces /3J 

where the surface divergence acting 
by the equation (v is contracted to 

on the continuous vector AO, tangential to u,isdefined 
a point) 

Let 6 be the angle between the %-axis and the projection of the film streamline onto 
the plane z+, tangential to the fiLm, and let the positive rotation of 6 correspond to anti- 
clockwise rotation of i, (from the side of the body) to its coincidence with ,US Then we 
can show that near the point in question uz+J= tp+Ofttg)~Euto = ?P*+U(P), and the operator A, 
on the surface should be treated in the same manner as the operator d on the plane. In parti- 
cular, for any scalar x we have 
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where Aax is the gradient at the film surface. 
Let us introduce the angle 0 defining the deviation of Ua from the tangent x,g-plane. 

Let Cl be positive for Us@ = i,Ue>O. We stress that i, = n 
of coordinates of the reference system chosen. 

and U,a = U,,* only at theorigin 

system (1.6), 
Then USa = Pi3 + O(tP), and we transform 

with due regard to what has been already said, to the form 

pap _Eg = p;u,, (us, - U*) + Fva 

p”(U3$.+ PaUonUsN f FN* 

(1.7) 

p”U’F = pJ7,, (EB - E’) f Q” 

F,,a= p,Uk - p”(U’)a k,o 

Here ai* z alaz, and a/ah% a/ax3 are derivatives along and normal to the streamline 

LJ,, = U,,, U.N = Usa, Fva = Fla 

and F# E FSB, and the fact that Fza = -F,,Q, k,,a = &llay represents the curvature of the normal 
section of the surface containing the streamlines (,$,a> 0, provided that the body is convex 
in the direction of the stream) is taken into account. The angles B and 0 in (1.7), the 
change in which characterizes bending of the film streamlines in the tangential and normal 
plane, are measured from arbitrarily chosen directions. 

The equation forF,,a from (1.7) follows from the second equation of (1.6), with k = 2. 
It is written last, since it serves to determine F,a in terms of &a, and the film and flow 
parameters obtained by solving the first four equations (or three when FVaand F#are independ- 
ent of TO) of (1.7) supplemented by the expressions for FVO,F# and Qa. Clearly, if F?Z" 
appears in these expressions, as in the case of dry friction when F#s 0, and F,” = -KF,,a, 
then the last equation is used to eliminate F,,a from them. The second, third and fourth equa- 
tions of (1.7) are in their characteristic form. Taking into account the equation for F,,“, we 
reduce the condition of smooth detachment (1.1) to the form 

p.U& - pa (Vu)” ha = 0 on P (1.8) 

Unlike the expresion for P, in (1.7), that given in /8/ lacks the term containing k$ due 
to an error. In spite of this, Gorbachev /8/ connected the detachment with the "supersonic" 
nature of the flow within the film and wrote, initially, (see note on p-507) the condition of 
detachment in the form (1.8). This formulation however is not mentioned in /8/. 

Equations describing the evolution of the filaments which are formed on the streamline 
surfaces as a result of intersections of the film streamlines, can also be obtained from (1.5). 
If we measure the distance I? along the filament (in the direction of motion of its particles) 
assign the indices r and N to the projections of the corresponding vectors onto the tangent 
and normal to the filament, and introduce the angles 6 and 8 for the filament in the same 
manner as for the film streamlines, then the equations sought will become 

d (p'U')@=jl f iz, p’U’dU’/d~ = jl (U& - LJ’) f (1.9) 

is (U", - U') + FT', p’(1?7’)~ dft/dI’= ilU& + j&e + FN’ 

p’U’dE’/dT = jl (Ef - E’) + in (Epu - E’) + Q’ 
- pr (Vi)8 k,’ = F,’ 

Here j = pa lU~*l is the flux density of film particles arriving at unit length of the fila- 
ment (from each of its sides), the indices 1 and 2 denote the film parameters to the left and 
right of the filter relative to the direction of motion of the particles within it, k,,’ = deidr 
is the curvature of the normal section ofthe surface in the direction of the cluster, Fr’, . . . 
characterize the action of the wall on unit length of the cluster and are brought in the same 
manner as F,.@, . . ., and F,’ > 0. we assume that in the model in question /3/ the particles 
do not pass from the film to the mixture, nor from the cluster to the film. Within this 
approximation we have LJN~~<O, while U,p>O. The modifications needed for the cluster moving 
along the fold in the streamline surface will be discussed below. 
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2. Using the equations and conditions derived above, we will 
in which the film may become detached from the body, as well as the 
of filaments. We will begin with a smooth detachment for which the 
on the line of detachment along the film streamline. Since for the 

investigate various ways 
formation and detachment 
curvature k;pis continuous 
attached film we have 

F,,a>O, from the last equation of (1.7) it follows that the condition of smooth detachment 
(1.8) can hold only when k,,"> 0, i.e. if the normal cross section of the body is convex to- 

wards the flow. Such a detachment occurs when k,,'Jincreases fairly rapidly (Fig.la, numerals 
1,2 and 3 denote the body, the film and the line of detachment respectively, and the arrow 
indicates the direction of motion of the particles). We shall show that in this case ha on I" 

is continuous for the detached film. To do this we will write the equations of the free stat- 
ionary film, which by virtue of (1.2) have the form 

(2.1) 

The particles precipitate on the film detached from the smooth body (without a break in 
l?, although possibly with a discontinuity in kt). From one side only. Therefore we have, 

on the film or at least near P,[U,cp]= -(Clanq$_z -U,cp,where cp denotes any parameter and the 
last step consists simply of omitting the minus subscript. In addition, when the line of 

smooth detachment is approached from the free-film side, I.&_- U,,+--rO, and, as was shown before, 
I' and qa in the right sides of (2.1) vanish. This, together with the penultimate equation 

of (2.1), shows that (1.8) holds on the film immediately after its smooth.detachment. Since 
kz= aO/ay, this ensures that kz remains continuous during the passage through P. 

Let us now suppose that k,,Ohas a break on I", increasing at the same time (e.g. from 
k,a< 0 to k,+* > 0, where the minus and plus signs denote the limiting values before and 

after detachment. It may happen that when F,,_a>O, the value of F,,+a found from the last 
equation of (1.7) becomes negative. This means that the film will detach itself from the body 
on I" and its curvature will increase with a jump, without however reaching the corresponding 
value of the body. In fact, repeating the previous discussion for this case, we can show that 
if the curvature of the film and the body are the same up to P (this is of course obligatory 
for the attached film) then, after the detachment k,," can be found from condition (1.8) where 
all the parameters except ha are continuous. The situation is illustrated schematically in 
Fig.lb. The limit of the case just discussed is represented by the separation from the salient 
line (Fig.lc). Here, as in the previous case, the film detached from the bcdy has a discontin- 
uity in curvature on r (with continuous 8). Wow we obviously have U,+#O I therefore in 
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determining knp = (a/@), from the penultimate equation of (2.11, we must take into consldez- 

ation the term containing f,,#. Because of this k,,! does not satisfy condition (1.8). We 
shall call the last two types of detachment "almost smooth". 

I 
a b C d 

Fig.2 

"Nonsmooth" separations with a break in the film along 

e 

!? can have various causes. In 
the simplest case tno attached films meet, approaching the sharp bend of the body from oppos- 
ite sides (Fig.id). In this case we need additional assumptions regarding the interaction 
(collision) ofthefilms with each other and with the wall in the nelghbourhood of the bend. 
We assume that the colliding films depart as a single film of unifotm thickness, i.e., that 
the differences inthaperameters even out rapidly andthebody exerts no concentrated force 
on Iv. 

Now consider the plane 2 normal to r, where a is the angle between the upper and lower 
generatrix of the body and p is the angle between the generatrix of the film and the upper 
generatrix of the body (Fig.2a). If V end Ware the projections of U? on x and Ev, then 
the angle fl and other parameters of the film detached from the body are given by the relations 
which follow fromthelaws of conservation of mass, momentum and energy 

(2.2) 

Here, as in Fig.2, numerals 1 and 2 denote the upper and lower attached film and the para- 
meters without indices refer to the fxee film. All quantities are taken on I”. Naturally, 
if the flux of the component of momentum normal to r of one of the films becomes vanishingly 
small compared with the seme characteristics of the other film, then $ will tend, according 
to (2.2), either to zero or to a, i.e., a continuous transformation to almost smooth detach- 
ment will be observed. Further, by virtue of the first formula of (2.2)/O Q $<u, and for any 
fixed a<n, @+a/2, as 1'1 which follows at once from symmetry considerations. For 

small angles of collision a<1 (Fig.2b) we have fix a/(2+ x) and for a = n--e with 
positive a<1 (Fig.Zc and d) we have 

When the sharp bend in the body disappears, (a=O), the resulting film when x+t by 
virtue of (2.3), comes into contact with one of the attached films on I?. Two possibilities 
must be considered here. If the contact occurs only along I+, then I? must become the line 
of almost smooth detachment. Such a situation could occur as a result of change in the orient- 
ation of the streamlines of the departing film if this resulted in the value of the curvature 
k: becoming larger than k$, and k*$, provided that the curvature of the streamlined Surface 

were continuous. If however we take into account the fact that in this case one of the 

attached films (say the upper) is screened near IQ from the precipitating particles by the 

detached film, then the situation discussed can only occur (naturally, only in Principle) on 
a body whose principal curvatures are of different signs. Otherwise, with k$>o, the 

screening will cause the Upper film to become detached without reaching l". In particular, 

if any section of the body near r 8 is convex towards the gas, then separation with tangential 
contact (in the r: plane) on the line of collision of attached films is, in general, imps- 
sible. 

Before explaining what can be expectedinsuch such situations, we shall COnSi&= the 

second possibility, when the film detached fromthebody along the tangent, spreads over it 
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together with one of the initial. attached films. The simultaneous presence on the surface of 

two, mutually permeating films, cannot be justified, neither by the condition for the two- 

fluid modeltobe valid (one-fluid for the particles), nor by reasons of conformity with the 

actual flow pattern. The introduction of filaments absorbing the particles from Colliding 
films offers a natural way out of this difficulty. When the mean free paths baof the particles 
of the mutually penetrating films are short@'<U, the filamentsrepresentarationalschematic 
representation of the narrow zones in which the particle density is even greater than in the 

boundary layers. We note, by the way, that because of the screening effect only a single free 
film can originate at the sharp corner, with initial parameters given by (2.21, and not two 

films which we would expect at first glance (one film generated by the attached films taming 
into contact with each other, and the other resulting from the intersection of the particle 
trajectories streamliningthe b&y from different sides). 

~b cluster appearing at the smooth surface as a result of the intersection of the film 

streamlines with pa< m, is described by the system (1.9). The same system but without the 
right sides describes the free filaments which, by virtue of this fact, move along rectilinear 
trajectories with constant parameters. The latter can be easily understood by recalling that, 
because of the zero thickness, the interaction between the filament and the gas is unimp0rt- 
ant, and there are assumed to be no mass forces proportional to p'in the present case. For 
a filament moving along the surface of the body and separating the attached films (by absorb- 
ing them within itself) with velocity vectors pointing towards the filament, the componet of 
the force F,'normal to the wall is non-negative. For this reason the filament will remain on 
the surface only for as long as k,'<O (Fig.le, the filament is shown by the thick line). At 
point a at which k,,' changes its sign, the filament leaves the surface while in tangential 
contact with it. 

Since the trajectories of the film particles continue to intersect even after the depar- 
ture of the filament, a new filament forms at the surface of the body the trace of which will, 
in general, make a finite angle with the previous filament. The initial Parameters of the new 
filament (including its direction) are found from the solution of the problem dealing with 
collision, on a smooth surface, of two attached films with different constant parameters. Let 
us make the quite natural assumption that the force F’and heat flux 
of the regenerated cluster, 

q'rriving at unit length 
also vanish at the initial point where p - 0. Then the problem 

in question becomes selfsimilar and it can be solved within the framework of (l-9), with 
I 

/Z 

rsFNl=QI=Or in the same manner as the analogous problem of the appearance of a film 
The orientation of the filament at the point a of its appearance onthe surfaceisgiven 

by the equation 

X = Pl~(E#NfV(%)~~ = pl"(vl~)*/{p$~(v,a)~) = 1 (2.4) 

while the cluster density p' 
p' =: 

near a is a linear function of the distance I? from a, i.e. 
RF, and its remaining characteristics are close to the constants which are given, to- 

gether with R, by the equations 

where, as in (2.4), all values are taken at a. 

Let k,'<O in the direction defined by (2.4). Then the filament will remain attached 
to the wall up to the point at which k,'changes its sign , and its evolution will be described 
by system (1.9) with intitial values (2.5). Otherwise, 
starting point, 

if we already have k,,'>O, at the 
then the filament leaves the body at the instant of its conceptionandgenerates 

a free film. Since in this case a filament with p'= 0 appears and leaves the body at once 
at every point of r", it follows that condition (2.4) holds everywhere on I". Therefore in 
accordance with the analysis carried out above for the collision of films on a smooth surface, 
the free film leaves thebody making with it a finite angle (in the I: plane) with its stream- 
lines touching p (Fig.le). Generally the upper edge of the film aa" does not coincide with 
the filament which has arrived at a, since the initial orientations are different, and aa" 
together with the film becomes curved, unlike the filament,‘during the interaction with the 
mixture.‘ System (2.1) with initial conditions on I'* where u@ 5: U' and Es= E' with U' and 
E" from (2.5), describes the evolution of the detached film. However. 
therefore, 

since UC touches I'*, 

I'" and the 
unlike the case of detachment from the edge (Figs.ld and 21, in determining pa on 
initial inclination of the departing film to the surface X we take into account 

its interaction with the mixture and the fact that the I'" becomes bent on the surface of the 
body, Without spending more t%.me on this problem, we shall show that if k,,'r l$ >0 already 
at the initial Point of intersection of the attached film streamlines, then the mechanism of 
formation and detachment of the film comes into operation at once without the formation 0f 
an attached filament. Here pOtends to zero as it approaches aa0 
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If the boundary CluSter flows around the corner (edge) with a > x, then in order to 
derive the equations describing its evolution it is convenient to use any Cartesian coordina- 
tes* the xz~-Phne of wh%ch represents one of the planes belonging to the bundle passing 
through the tangent to the edge (the z+ -axis points towards U' along the edge, and $towards 
the inside of the body). In any such system the equations of motion ofthe filament ~~11 
reduce to the first, Second and fourth equation of (1.9) defining p',U' and El. Moreover, 
we will find the following relation must hold for all m inthe range 0<q<a"=2n-utn 

CD (r, tp) m pP (VI")* co9 (a” - cp) + pQ (V*‘)* ~0s cp - p’ (UQg /cc = F,l > 0 (2.6) 

Here the angle g is introduced in the manner shown in Fig.lf and 2e, &is the curvature of 
the projection of the edge onthe x1+-plane and k,> 0, if this projection is convex towards 
the gas, andFez is the projection of the reaction of the body against the filament in the 
negative direction of the G+-axis. The condition under which the motion in question can be 
realized is (this is an additional assumption), 
should be non-negative for all 0 Q ~,<a'. 

that the quantity Fcp’ obtained form (2.6) 
The change in the sign of @ at some point when 

m = g* (I',) results in the filament either joining the flow, or moving to one of the walls. 
When the filamsnt doins the flow, which as we well know takes place when O(m*(a", a new 

filament may begin to form at the edge, with the initial parameters given by (2.5) and with 

pf = R (r --r,) near a. The inequality from (2.6) may hold for this filament, e.g. because of 
the decrease (down to zero at the point a) of the third term on the Left-hand side. If on 
the othet hand the inequality does not hold when p I= 0, after the filament joins the flow, a 
free film begins to emerge from the edge, the particles of which leave the bodywhiletouching 
the edge (Pig.lg). The angle cp ='p" 
(1 + x co9 a”) I (x sin a"). 

of the departing film is given by the equation ctgtp = 

If rp* = 0 or a0 and k,,'< 0 on the line of contact betweenthefifament which has left 

the edge, and the corresponding edge of the body, then the filament will begin to move further 
along the body and screen the edge frcnn one of the initial attached films (Fig.lh). The fiow 
near the edge will differ when a"<n/Z from the one discussed only in the absence of the 
screened film. In contrast to this, we find that when nl2 <a"< x, then another, funda- 
mentally different situation becomes possible in which the particles belonging to one of the 
films (we shall assumer to be specific, that it is the left one as shown in Fig.lif will 
cross the edge and pass to the other edge. Here a ooncentrated force F,, = pIc (Vl@)z sina", 
acts on the body along the normal to the second edge, over unit length of the edge, and the 
initial parameters of the film at the edge are 

P a r= pla/cocos a", V’ = V 1’ cos cc’, W” = Wla, E’ = El’ 

3. Fig.3 shows the patterns of two-dimensional flows with films and filaments. The 
films and filaments are drawnin thick lines, the gas (pasticle) streamlines in thin continu- 
ous (dashed) lines, and the shock waves (the @+-characteristics) with double dotted lines. 
The body contours are cross hatched. Eigs.3.a and b depict the flows realized within the 
framework of the model discussed, in the Lava1 nozzle where the film is formed from the 
particles arriving at the narrowing walls and must leave the wall near the smallest cross 
section. If this did not occur, then F", in (1.7) would become negative since here we have 

kE>O and ps= Oby virtue of the appearance of a boundary zone of pure gas. Further evolution 
of the flow depends on the magnitude (and direction) of the moments of the film faEpOC'ql" 

at the point of separation. If the impulse P is not excessively large, then the film through 
which a stream of mixture passes, filtering, as it were, the particles off during its passage, 
causes the film to change it direction of motion and reach the wall, while the separating the 
zones containing the mixture and the pure gas. After making contact with the wall and losing 
the normal component of the momentum, the film becomes reattached (Fig.3a). 

If the vertical component of I* is large at the instant of separation, which occurs rn 
the caseof channels with fairly curved walls and large contraction, then the film attains the 
plane or axis of smetry and forms there either a film , or a cluster (we assume that only a 
single "stream" of particles appears as a result of merging). Such a situtationisshown in 

Fig.3b. Without writing out the formulas for determining the parameters of a similar stream, 
we note that in the plane case it reduces to (2.2) with x= 1. FOE a converging axisymmetric 

film we find that because of tending to infinity pa-y-', where y is the distance from the 

axis of symmetry, it is advisable, when deriving the formulas, to take the mass flux of the 
film at y as small compared with the relaxation length, but nevertheless finite. 

Let US now explain the behaviour of the film parameters near the critical point o of 
a blunt b&y, where we also place the origin of Cartesian or ~findriCa1 coordinates (Fig.3Ci. 
Let u and v be thex-and y-velocity components; v =0 and 1 in the plane and axisymmetric 

case. A film or filament not shown in Fig.3c may be present in the oncoming flow On the X- 

axis. Then near o we have 



@,ufl + 6)’ pa (y) = (i -t_ .,lp,ug/vJ (y) ’ 
fp (y) E # (y) 5 

. 
PY", when v-0 

1 (Y) = “I PI) riydr), f~ - 
PX when v=i 

0 
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(3.1) 

and P(O) is equal to Emuor E,' when 6+ 0 and to El(O) when 6 = 0. In (3.1) p, and u,are taken 

at y = 0; v,(O) = 0 and 6 += 0, if a film or filament arrives at 0, and their parameter are 

denoted by the subscript DD. Since I (y) = D (JJ) for any o,(P) = 0 (I), therefore pa (u) - 00 when 

8#0. At the same time we have 

a 

d e 

Fig.3 

Y 

lim p“(q)rlydrl= IX 
V-J 0 

(3.2) 

Here pa (o)is unbounded also when 8 ~0, provided that %(I)/# -o(u) and for (3.2) it is sufficient 

that Ug (#)/~a" = 0 (II). The unboundedness of PO(O) and (3.2) follows from the fact that in the 
model in question uv=vO is generated by the y-component of the momentum of the particles 
arriving at the film, and the component is much too small in the cases described above to 
accelerate the film sufficiently rapidly. We note in this connection that if b-0, then 
the quantity Pa(O) is finite when u,(& = 0 (1) and equal to zero when U/U, (u) = o (u). 

One of the possible methods of constructing a model preventing undesirable situations, 
with p0 increasing without limit and with (3.2), consists of introducing the pressure of the 
"gas" composed of the particles. Without discussing the details of such an approach, we shall 
indicate an alternative which seems to be at least as plausible under certain conditions. It 
is illustrated by Fig.3d (6=0) and 3e r&+0), where the cross hatching indicates a "ridge", 
i.e. a zone containing loose particles of finite volume. When 6+0, the angle at the top 
of the ridge is zero because the loose medium cannot resist a concentrated force whichwould 
otherwise appear at the point at which the arriving film or filament breaks up. The complete 
solution of the problem with a ridge assumes the use of the theory of the filtration of a gas 
through a moving particulate medium. The problem is simplified if the momentum fluxes of the 
gas and particles are small compared with the stresses of the particulate medium at the ridge, 
because the motion of the particulate medium at the ridge filtering the gas can then be neglec- 
ted. Without writing put theequations of motion of the film along the ridge, we recall that 
in this case, unlike the previous case, u,,#O at the boundary separating the ridge from the 
surface of discontinuity of the porosity /9/. 

Finally we stress that no such features appear in flows past sharp bodies and the intro- 
duction of the ridges is not, in general, necessary, including the case of a filament imping- 
ing on an axisymmetric body when pP(O)pm. In the latter case, which is the converse of the 
film problem of a film focusing on the axis (Fig.3c), unlike (3.1) Pa(y)-~-a, and the left 
side of (3.2) is equal to zero. In the remaining cases of flows past sharp bodies we have 
PO(O)=O,if S=O and v=O and 1, and p"(O) is finite when gg0 and v=O. 

Fig.3fexplainsthe appearance of a film in a supersonic flow, initially uniform and in 
equilibrium, past a convex angle. In a strong rarefaction bundle which appears in such a 
flow caused by a drop in p and T, the density and viscosity of the gas as well as the factor 
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o, appearing in the expression for the force of interaction between the phases f=(p,.(u .- ti,), 
Cari decrease so strongly that the line of relaxation of the particles with respect to veloc- 

ity becomes many times greater behind the bundle than in front of it. As a result, the 
particles moving at various distances from the wall diverge in the initial part of the 
bundle by an angle which is greater the farther from the wall the particle intersects the 
bundle,'and will afterwards move almost along straight lines, invariably intersecting and 
forming a film. 

In conclusion, we note that the analysis carried out above is baeed on the idea of re- 
presenting films and filaments as surfaces and lines. Actually, the volume density of the 
seoond phase cannot be greater than that of the "dense" packing of the particles Pm = VP/ 
where pa0 is the density of the particle material and the coefficient y<f depends on the 
form of the particles, This makes it possible to estimate, in the solution constructed, the 
minimum possible thicknesses of the films as pa/p,, and the radii of the filaments as 
)/pw_ and then to correct e.g. the trajectory of the cluster acted upon by the gas and 
particle flows. The mechanisms of diffusion connected with removal of particles from films 
by gas streams passing through them also calls for additional investigation_ Nevertheless, 
if the mean free path of the dispexsed phase is noticeably less than the characteristic 
dimension of the problem, then even without taking diffusion into account, the solutions with 
films and filaments yield qualitatively (and at times quantitatively) correct results. Thus, 
if the solution shown in Fig.3a(b) is realized in a flow through a nozzle, then the maximum 
density of the particles should be expected at its wall (axis). Finally, we point out how 
close the problem discussed above are to those appearing in hypersonic gas dynamics in 
connection with formation of compressed layers in the Newton-Buseman model approximation. In 
the latter case the condition of detachment of the layer is that the gas pressure becomes 
equal to zero on one of its sides. 

The authors thank G.G. Chernyi, A.B. Batazhin, V-M. Puzyrev and V.A. Shironosov for 
valuable criticisms. 
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